Macrolide-Peptide Conjugates as Probes of the Path of Travel of the Nascent Peptides through the Ribosome

نویسندگان

  • Arren Z. Washington
  • Derek B. Benicewicz
  • Joshua C. Canzoneri
  • Crystal E. Fagan
  • Sandra C. Mwakwari
  • Tatsuya Maehigashi
  • Christine M. Dunham
  • Adegboyega K. Oyelere
چکیده

Despite decades of research on the bacterial ribosome, the ribosomal exit tunnel is still poorly understood. Although it has been suggested that the exit tunnel is simply a convenient route of egress for the nascent chain, specific protein sequences serve to slow the rate of translation, suggesting some degree of interaction between the nascent peptide chain and the exit tunnel. To understand how the ribosome interacts with nascent peptide sequences, we synthesized and characterized a novel class of probe molecules. These peptide-macrolide (or "peptolide") conjugates were designed to present unique peptide sequences to the exit tunnel. Biochemical and X-ray structural analyses of the interactions between these probes and the ribosome reveal interesting insights about the exit tunnel. Using translation inhibition and RNA structure probing assays, we find the exit tunnel has a relaxed preference for the directionality (N → C or C → N orientation) of the nascent peptides. Moreover, the X-ray crystal structure of one peptolide derived from a positively charged, reverse Nuclear Localization Sequence peptide, bound to the 70S bacterial ribosome, reveals that the macrolide ring of the peptolide binds in the same position as other macrolides. However, the peptide tail folds over the macrolide ring, oriented toward the peptidyl transferase center and interacting in a novel manner with 23S rRNA residue C2442 and His69 of ribosomal protein L4. These data suggest that these peptolides are viable probes for interrogating nascent peptide-exit tunnel interaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, synthesis and biological evaluation of Ciprofloxacin- peptide conjugates as anticancer agents

Cancer has emerged as a leading cause of death throughout the world. Peptides are a novel class of anticancer agents that can specifically target cancer cells with low toxicity to normal tissues and thus, offer new opportunities for future cancer treatment. On the other hand, Ciprofloxacin, an antibiotic, also known to its anticancer property for enabling cell cycle arrest and creating double s...

متن کامل

Design, synthesis and biological evaluation of Ciprofloxacin- peptide conjugates as anticancer agents

Cancer has emerged as a leading cause of death throughout the world. Peptides are a novel class of anticancer agents that can specifically target cancer cells with low toxicity to normal tissues and thus, offer new opportunities for future cancer treatment. On the other hand, Ciprofloxacin, an antibiotic, also known to its anticancer property for enabling cell cycle arrest and creating double s...

متن کامل

Peptide-mediated macrolide resistance reveals possible specific interactions in the nascent peptide exit tunnel.

Expression of specific short peptides can render cells resistant to macrolide antibiotics. Peptides conferring resistance to structurally different macrolides including oleandomycin, azithromycin, azaerythromycin, josamycin and a ketolide cethromycin were selected from a random pentapeptide expression library. Analysis of the entire collection of the resistance peptides allowed their classifica...

متن کامل

Application of FITC for detecting the binding of antiangiogenic peptide to HUVECs

Angiogenesis is the generation of new blood vessels from the existing vasculature. The angiogenic programme requires the degradation of the basement membrane, endothelial cell migration and invasion of the extracellular matrix, with endothelial cell proliferation and capillary lumen formation before maturation and stabilization of the new vasculature. Angiogenesis is dependent on a delicate equ...

متن کامل

The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome.

The macrolide-lincosamide-streptogramin B class (MLS) of antibiotics contains structurally different but functionally similar drugs, that all bind to the 50S ribosomal subunit. It has been suggested that these compounds block the path by which nascent peptides exit the ribosome. We have studied the mechanisms of action of four macrolides (erythromycin, josamycin, spiramycin and telithromycin), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014